
Quantum Coding Theory (UC Berkeley CS294, Spring 2024)

Lecture 8: CSS Codes
February 16, 2024

Lecturer: John Wright Scribe: Uma Girish

Outline of this lecture

Last week we saw stabilizer codes and some necessary and sufficient conditions for the code
to be non-trivial. It turns out that the conditions described in the previous lecture are not
sufficient, so we will first correct them. Then, we will see two important examples of stabilizer
codes.

• The [[5, 1, 3]] code [BDSW96, LMPZ96]: This is the smallest code that encodes
one logical qubit and corrects one error. We will see a description of this code.

• Calderbank-Shor-Steane (CSS) codes [Ste96, CS96]: This is a central family
of quantum error correcting codes that are constructed from classical error correcting
codes satisfying certain properties. We will discuss what these properties are and
conclude with a useful description of the codewords in this code.

1 Stabilizer Codes

For a subgroup S ⊆ Pn of Pauli matrices we defined the stabilizer code C[S] as the subspace
of all vectors |ψ⟩ ∈ Cn that are stabilized by S, i.e., g |ψ⟩ = |ψ⟩ for all g ∈ S. We think
of the elements of S as the quantum analogue of parity checks. Under what conditions on
the subgroup G is this subspace C[S] non-trivial? Let us recall some necessary conditions.
Let g1, . . . , gℓ be generators of the subgroup S, i.e., S = ⟨g1, . . . , gℓ⟩. It is clear that these
generators must satisfy the following conditions:

1. They commute, i.e., gigj = gjgi for all i, j ∈ [ℓ].

2. They are all observables, i.e., g2i = I for all i ∈ [ℓ].

Item 1 is necessary as any two Paulis gi and gj either commute or anti-commute, i.e.,
gigj = ±gjgi and if they anti-commute, then there wouldn’t exist any non-zero state |ϕ⟩
stabilized by both gigj and gjgi. Item 2 is necessary as the square of any Pauli matrix is
±I, and for there to exist a non-zero |ϕ⟩ stabilized by this element, it would have to be I.
While Items 1 and 2 are necessary, they are not sufficient. It turns out that we also need the
following condition.

3. The negative identity is not in the subgroup, i.e., −I /∈ S.

1

Clearly, we need the third condition as there is no state |ψ⟩ that is stabilized by −I.
Furthermore, this condition is not implied by the first two conditions. For instance, the
Pauli subgroup S = {I,−I}, satisfies the first two conditions but not the third. We remark
that Item 3 actually implies Item 2, since the square of every Pauli matrix is ±I and Item 3
rules out −I. It turns out that Item 1 and Item 3 are necessary and also sufficient conditions
for the stabilizer code to be non-trivial. Let us describe this more formally now. A stabilizer
code C[S] is non-trivial if and only if the subgroup S satsifes the conditions below.

Definition 1.1 (Stabilizer code). A stabilizer code C[S] is defined by a Pauli subgroup
S = ⟨g1, . . . , gℓ⟩ ⊆ Pn such that:

1. gigj = gjgi for all i, j ∈ [ℓ].

2. −I /∈ S.

While the first condition here is easy to check (since it suffices to check that the generators
commute), the second one is not super easy to check. A priori, there is no way to verify
that −I /∈ S without checking every possible product of the generators. The reason is that
there could exist some highly non-trivial combination of the generators that multiplies to
the negative identity. For example, if we consider the subgroup S = ⟨XX,ZZ, Y Y ⟩, we have
that (XX) · (ZZ) = −Y Y ∈ S and since Y Y ∈ S, we would have −(Y Y) · (Y Y) = −I ∈ S.

We remark that these conditions for the non-triviality of a quantum error correcting code
seem to be a uniquely quantum phenomenon. In the classical world, any non-trivial subspace
S ⊂ Fn

2 of parity checks with dimension ℓ < n defines a classical code of non-zero dimension
n− ℓ.

1.1 Distance of a Stabilizer Code

Let us recall that formula for the distance of a stabilizer code. Firstly, what are the unde-
tectable errors of a stabilizer code? These are precisely the elements of the centralizer N(S)
of S, where N(S) = {E ∈ Pn : EP = PE,∀P ∈ S} consists of all Paulis that commute with
the parity checks in S. If an error E satisfes EP = PE for a parity check P , then E passes
the parity check P and hence P cannot detect E. If this holds for all parity checks P ∈ S,
then E becomes undetectable. We also saw that not all undetectable errors are important.
For instance, if E ∈ S, then E is undetectable as it commutes with all the parity checks,
however, it acts as the identity matrix on all the codewords, so effectively, it is as though no
error was applied. What we really care about are undetectable errors that actually change
the codewords. These are the precisely elements of N(S) \ S - every element of this set is
undetectable, and acts non-trivially on some codeword. Thus, we saw that the distance of
the code is the minimum weight of an error E ∈ N(S) \ S.

dist(C[S]) = min
E∈N(S)\S

wt(E). (1)

Actually, there is a somewhat subtle point here that is often overlooked: if the Pauli P is in
S, then −P is in N(S) \ S (as are ±i · P). But −P is not an error per se, as for any state

2

g1 = X Z Z X I
g2 = I X Z Z X
g3 = X I X Z Z
g4 = Z X I X Z
g5 = Z Z X I X

Figure 1: Generators of the parity checks for the [[5, 3, 1]] code. The fifth generator here is
the product of the first four and can be omitted.

|ψ⟩ ∈ C[S], −P just adds an undetectable global phase to |ψ⟩. So we should not include
−P if we want to list out the undetectable errors. To fix this, we will slightly modify our
definitions. Write N+(S) for

N+(S) = {P ∈ {I,X, Y, Z}⊗n | ∀Q ∈ S, PQ = QP};

the “+” here denotes the fact that we are only considering the Paulis with a phase of +1.
Similarly, write S+ for

S+ = {P ∈ {I,X, Y, Z}⊗n | P ∈ S or − P ∈ S}.

Then the set of undetectable errors is actually N+(S) \ S+. We can use this to revise our
definition of the distance from Equation (1) to be

dist(C[S]) = min
E∈N+(S)\S+

wt(E),

i.e. the smallest weight of any element in N+(S) \ S+. In the literature, it is somewhat
common to refer to N (S) \ S when N+(S) \ S+ is meant; we will maintain this distinction
throughout this lecture, although we will probably drop the distinction in future lectures.

We will now move on to discuss examples of stabilizer codes.

2 The [[5, 1, 3]] Code

The [[5, 1, 3]] code is a non-degenerate code on five physical qubits that encodes one log-
ical qubit and corrects one error. This code was discovered independently by [LMPZ96]
and [BDSW96]. The authors of [LMPZ96] arrived at this code by exhaustively searching
for non-degenerate five-qubit codes that can correct one error. The [[5, 3, 1]] code is also
the smallest code that can correct single-qubit errors with one logical qubit (among all
error-correcting codes, not necessarily non-degenerate) and this makes it interesting to exper-
imentalists. We saw last week a code with one logical qubit that can detect one error using
four physical qubits. But to correct one error, we need five qubits and the [[5, 3, 1]] achieves
this. This code is also known to be a perfect code, a code that saturates what is known as
the quantum hamming bound which we will describe later. Let’s define the [[5, 3, 1]] code.

3

X1 X2 X3 X4 X5 Z1 Z2 Z3 Z4 Z5 Y1 Y2 Y3 Y4 Y5
g1 + - - + + - + + - + - - - - +
g2 + + - - + + - + + - + - - - -
g3 + + + - - - + - + + - + - - -
g4 - + + + - + - + - + - - + - -

Figure 2: Syndromes of single-qubit errors on the [[5, 3, 1]] code. Each row represents a parity
check and each column a single-qubit error.

Definition 2.1. The [[5, 3, 1]] code is the Stabilizer code C[S] on five qubits where

S = ⟨XZZXI, IXZZX,XIXZZ,ZXIXZ,ZZXIX⟩.

In other words, the parity checks of this code are generated by all possible cyclic shifts of
XZZXI. This is depicted in Figure 1. It is not too difficult to see that the fifth generator is
not needed as it is the product of the first four generators. It is not too hard to see that first
four generators are independent: If a subset of the first four rows multiplies to the identity
matrix, the first column tells us that this subset is contained in {1, 2, 3}, the second column
tells us that it is contained in {2, 3, 4} and the third column gives {1, 2, 4} - the intersection
of these is {2} and this forces us to pick the empty subset.

2.1 Distance of the [[5, 3, 1]] code

Let us see why this is a [[5, 1, 3]] code. The number of physical qubits is 5 and the number
of logical qubits is 5 − 4 = 1 as we have four independent parity checks. We will now see
that the distance of this code is 3, i.e., we correct single qubit errors but not more. Firstly,
consider the error X1 := XIIII which acts as X on the first qubit and trivially on the rest.
We can compute the syndrome of this error to be |+,+,+,−⟩, and hence the fourth parity
check allows us to detect this error. Similarly, Z1 = ZIIII has syndrome |−,+,−,+⟩ and
we can detect it using the first and third parity checks. Finally, Y1 = Y IIII has syndrome
|−,+,−,−⟩ and we can detect it using the first, third and fourth parity checks. By symmetry,
we can correct all single-qubit errors. This shows that the distance is at least 3 (since single-
qubit errors can be corrected). It turns out that the distance is no bigger than 3. To see this,
it is easy to construct weight-5 errors in N+(S)\S+, namely XXXXX and ZZZZZ - these
elements clearly commute with all of S and it is not too hard to see that these elements are
not in S. To construct weight-3 errors in N+(S) \ S+, we observe that the error IY Y IX is
equal to the product of a weight-5 error in N+(S) \ S+ (namely, XXXXX) and a parity
check in S (namely, XZZXI), and hence we have a weight-3 error in N+(S) \ S+.

2.2 Non-degeneracy of the [[5, 3, 1]] code

It turns out that the syndromes across all single-qubit errors are actually distinct, making
the [[5, 3, 1]] code a non-degenerate code. This means that we can actually identify which

4

error occurred using the syndrome. We can check this explicitly using the table in Figure 2.
It turns out that this is the best you can do with a non-degenerate code of this size. In this
code, there are 5 qubits and 3 possibilities for the error (X, Y or Z), so the number of possible
errors we can correct is 5 × 3 + 1 (+1 for the identity error) which is 16. We only have 4
bits in our syndrome, so the number of possible syndromes is 16. Such kind of a code where
the number of possible errors equals the number of possible syndromes is called a perfect
code. In general, for a non-degenerate code, the number of possible errors must be at most
the number of possible syndromes. This is essentially the content of the quantum hamming
bound which we will see next week and the [[5, 3, 1]] saturates the quantum hamming bound.

3 Calderbank-Shor-Steane (CSS) Codes

The CSS codes are a central family of codes. These were independently discovered by
Calderbank and Shor [CS96] and by Steane [Ste96]. In the CSS code, each generator is a
tensor product of (1) only X, I or (2) only Z, I. For example, XXXII,XIXXI, ZIZII
and IIIIZ are examples of generators that satisfy this condition while XZIII does not. We
refer to generators of the form (1) as X parity checks and these come from some classical
code. Similarly generators of the form (2) are called Z parity checks and come from another
classical code. Provided these two classical codes satsify some nice properties, we obtain a
good quantum error correcting code.

The motivation for these codes comes from the following. There are two sources of errors,
namely, bit flips X and phase flips Z. It turns out that X parity checks are good at detecting
Z errors and Z parity checks are good at detecting X errors. So the set of X parity checks
effectively corrects for all Z errors while the Z parity checks correct X errors. Since Y = XZ,
the hope is that correcting Z errors and X errors allows us to correct Y errors.

How do we choose the X parity checks and Z parity checks? The idea is to have both the
X parity checks and Z parity checks come from good classical error correcting codes. The
intuition is that a classical code is designed to correct bit-flip errors, namely X errors. Since
the phase-flip errors Z act like bit-flip errors in the Z-basis, a classical code can also be used
to correct Z errors using a change of basis. By combining the two, we obtain a code that
can correct both X and Z errors. This idea allows us to import a lot of the intuition and
ideas from the classical error correcting world into the quantum world. We now describe this
in more detail.

3.1 Description of the CSS Code

First we set up some notation. Given h ∈ {0, 1}n, we use Xh to denote Xh1 ⊗ . . . ⊗ Xhn

where Xa = X if a = 1 and I if a = 0. Let’s recap classical linear codes. A [n, k, d] classical
linear code corresponds to an F2-linear subspace C ⊆ {0, 1}n of dimension k. The code C is
specified by the subspace of parity checks C⊥, namely,

C = {c : ⟨c, h⟩ = 0 mod 2,∀h ∈ C⊥}.

5

The distance of the code is the minimum hamming weight of a non-zero codeword, i.e.,

d := min
0̸=c∈C

wt(c).

Now that we have defined classical linear error correcting codes, we can define CSS codes. Let
CX , CZ be classical linear codes where CX is a [n, kX , dX] linear code, and CZ is a [n, kZ , dZ]
linear code. The idea here is to use CX to detect phase-flip errors Z and use CZ to detect
bit-flip errors X. To do this, let us define the CSS code corresponding to CX , CZ as the
stabilizer code with following two sets of generators:

• XhX for all hX ∈ C⊥
X ,

• ZhZ for all hZ ∈ C⊥
Z

When does this work and produce a non-trivial stabilizer code? We need to check that the
conditions in Definition 1.1 are satisfied. It is not too hard to see that −I cannot be generated
by multiplying +I, +X and +Z with each other. Next, we need to check the commutativity
condition. In particular, we need that XhXZhZ = ZhZXhX for all hX ∈ C⊥

X , hZ ∈ C⊥
Z . When

does this hold? If ⟨hX , hZ⟩ = 1 mod 2 then in the product XhXZhZ we get an odd number
of Y and an overall phase of −1 whereas if ⟨hX , hZ⟩ = 0 mod 2 then we get an even number
of Y and an overall phase of 1. In particular,

XhXZhZ = (−1)⟨hX ,hZ⟩ mod 2 · ZhZXhX .

This implies that XhX and ZhZ commute iff ⟨hX , hZ⟩ = 0 mod 2. In other words, every
hX ∈ C⊥

X is a parity check for every hZ ∈ C⊥
Z and hence, C⊥

X ⊆ (C⊥
Z)

⊥ = CZ . Thus, the X
parity checks are in the Z code and the Z parity checks are in the X code, i.e.,

C⊥
X ⊆ CZ and C⊥

Z ⊆ CX .

There’s another way of writing this. Let h
(1)
X , . . . , h

(ℓX)
X be a basis for C⊥

X and let

h
(1)
Z , . . . , h

(ℓZ)
Z be a basis for C⊥

Z . Let us construct matrices whose rows consist of a basis for
C⊥

X and C⊥
Z respectively, i.e.,

HX :=

 h
(1)
X

. . .

h
(ℓX)
X

 HZ :=

 h(1)Z

. . .

h
(ℓZ)
Z

 .
The commutativity condition implies that

HX ·HT
Z = 0 mod 2.

This condition is what makes designing CSS codes so difficult and also so interesting. We
need to design two codes, one that works for X parity checks and one that works for Z parity
checks, such that both are both good codes, but also they have this nice relationship with
each other, namely, the parity checks of each code are codewords of the other.

6

Definition 3.1. Let CX , CZ be classical linear codes where

CX is a [n, kX , dX] linear code, and

CZ is a [n, kZ , dZ] linear code

such that C⊥
X ⊆ CZ and C⊥

Z ⊆ CX . The CSS code corresponding to CX , CZ is the stabilizer
code with two sets of generators:

• XhX for all hX ∈ C⊥
X ,

• ZhZ for all hZ ∈ C⊥
Z .

Let us now understand the parameters of the CSS code code. First, we have a code on n
physical qubits. It is not too difficult to see that the generators {h(1)X , . . . , h

(ℓX)
X , h

(1)
Z , . . . , h

(ℓZ)
Z }

are independent group elements: The only way for a product of any subset of these generators
to be I, is for the product within the X generators to be I and the product within the Z
generators to be I, and since h

(1)
X , . . . , h

(ℓX)
X forms a basis for C⊥

X and h
(1)
Z , . . . , h

(ℓZ)
Z forms a

basis for C⊥
Z , the only way for this product to be I is to pick the empty subset. This gives

us the following fact.

Fact 3.2. Let ℓX = n− kX and ℓZ = n− kZ. Then, CSS is a [[n, n− ℓX − ℓZ]] code.

3.2 Distance of the CSS code

Let’s try to understand the distance of the CSS code. First, let’s look at bit flip errors. Let
e ∈ {0, 1}n. An X error on n qubits can be described by Xe where Xe = Xe1

1 ⊗ . . . ⊗Xen
n .

To see the syndrome of this error, we need to see whether it commutes or anticommutes with
out generators. Firstly, it commutes with all the X parity checks, i.e., XeXhX = XhXXe for
all hX ∈ C⊥

X . For a Z parity check hZ ∈ C⊥
Z recall that

XeZhZ = ZhZXe(−1)⟨hZ ,e⟩ mod 2.

Therefore, for each parity check hZ ∈ C⊥
Z , the syndrome of the error Xe corresponding to

hZ is ⟨hZ , e⟩ mod 2. Hence, the bit-flip error Xe is undetectable iff ⟨hZ , e⟩ = 0 mod 2 for all
hZ ∈ C⊥

Z , in other words, e ∈ CZ . Altogether, this tells us that for all e ∈ {0, 1}n,

The error Xe is in N(S) iff e ∈ CZ .

This says that the undetectable X errors correspond to elements of CZ . Suppose 0 ≤ wt(e) ≤
dZ − 1, then by the distance property of code CZ , we must have e /∈ CZ and hence we can
indeed detect the error Xe. This shows that we can detect Xe errors if wt(e) ≤ dZ and we
can correct them if wt(e) ≤ (dZ − 1)/2.

All of this shows that if a bit-flip error occurs, then we are able to correct it as long as the
underlying classical code CZ is able to correct those errors. But actually, we get something
more, due to degeneracy. For example, take an undetectable error e ∈ CZ such that e ∈ C⊥

X .

7

Since e is an X parity check, we have Xe |ψ⟩ = |ψ⟩ for all states |ψ⟩ in the CSS code. Thus,
whenever e ∈ C⊥

X , the error Xe acts trivially on all codewords and we have degeneracy. This
means that the only undetectable errors that act non-trivially on the codewords, are those
elements of CZ that are not in C⊥

X . In other words, the non-trivial bit-flip errors that can
act on the code correspond to Xe where e ∈ CZ \ C⊥

X .
This motivates us to define the quantity

d+Z := min
e∈CZ\C⊥

X

wt(e)

which correspond to the smallest non-trivial bit-flip errors that we cannot detect. This
quantity is at least the distance dZ of the classical code CZ , since dZ := mine∈CZ

wt(e) is a
minimization problem over a larger set. And similarly

d⊥X := min
e∈CX\C⊥

Z

wt(e).

corresponds to the smallest non-trivial phase-flip error that we cannot detect. We can now
show the following fact.

Fact 3.3. Distance of the CSS code is precisely min{d+X , d
+
Z}.

Proof of Fact 3.3. Let us consider a general error E, which up to a global phase can be
described by

E = XeXZeZ

where eX , eZ ∈ {0, 1}n. We will show that the syndrome of this error under the various
parity checks comprises of ⟨eZ , hX⟩ mod 2 for each hX ∈ C⊥

X and ⟨eX , hZ⟩ mod 2 for each
HZ ∈ C⊥

Z . This can be seen as follows.

• X parity checks: For any parity check hX ∈ C⊥
X , we have

XhX (XeXZeZ) = (XeXZeZ)XhX · (−1)⟨eZ ,hX⟩ mod 2.

Thus, the syndrome corresponding to the parity check hX is ⟨eZ , hX⟩ mod 2.

• Z parity checks: For any parity check hZ ∈ C⊥
Z , we have

ZhZ (XeXZeZ) = (XeXZeZ)ZhZ · (−1)⟨eX ,hZ⟩ mod 2.

Thus, the syndrome corresponding to the parity check hZ is ⟨eX , hZ⟩ mod 2.

Recall that the distance of the code is the minimum weight element of N+(S) \S+. Let’s
first compute N(S), the set of undetectable errors. By the above calculation, the error
E = XeXZeZ is undetectable iff ⟨eZ , hX⟩ = 0 mod 2 for all hX ∈ C⊥

X and ⟨eX , hZ⟩ = 0 mod 2
for all hZ ∈ C⊥

Z . This is equivalent to eZ ∈ CX and eX ∈ CZ . Thus,

The error E = XeXZeZ is in N(S) iff eZ ∈ CX and eX ∈ CZ . (2)

8

Now let’s compute S, i.e., the errors which act as the identity matrix on the codewords. The
error E = XeXZeZ is in S if and only if eZ ∈ C⊥

Z and eX ∈ C⊥
X . Hence, we have the following

condition.
The error E = XeXZeZ is not in S iff eZ /∈ C⊥

Z or eX /∈ C⊥
X . (3)

Equations (2) and (3) imply that an error XeXZeZ is in N(S) \S if and only if eZ ∈ CX and
eX ∈ CZ and either eZ /∈ C⊥

Z or eX /∈ C⊥
X . In the first case, we obtain that eZ ∈ CX \C⊥

Z and
hence the weight of e is at least d+Z and in the second case, we obtain that eX ∈ CZ \C⊥

X and
hence the weight of e is at least d+X . This shows that the distance is at least min(d+X , d

+
Z). It

can be seen that this is also an upper bound by taking the error XeXZeZ that saturates this
bound.

As described earlier, we have min{d+X , d
+
Z} ≥ min{dX , dZ}. In general, the distance of a

CSS code can be strictly bigger than min(dX , dZ), due to degeneracy and we’ll see the toric
code in the future which is an example of this.

3.3 Describing the Codewords of the CSS code

The CSS code has the nice property that we can explicitly write down the codewords. For
every cZ ∈ CZ , we can associate a codeword

1√
|C⊥

X |

∑
hX∈C⊥

X

|cZ + hX⟩ .

Observe that this codeword only depends on the subspace cZ + C⊥
X . In other words, we

have a codeword for each element of the quotiented space CZ/C
⊥
X . It’s easy to see that it

passes all Z parity checks, since cZ ∈ CZ and hX ∈ C⊥
X ⊆ CZ . Next class, we’ll see that it

passes X parity checks.

References

[BDSW96] Charles H. Bennett, David P. DiVincenzo, John A. Smolin, and William K.
Wootters. Mixed-state entanglement and quantum error correction. Phys. Rev.
A, 54:3824–3851, Nov 1996. (document), 2

[CS96] A. R. Calderbank and Peter W. Shor. Good quantum error-correcting codes exist.
Phys. Rev. A, 54:1098–1105, Aug 1996. (document), 3

[LMPZ96] Raymond Laflamme, Cesar Miquel, Juan Pablo Paz, and Wojciech Hubert Zurek.
Perfect quantum error correcting code. Phys. Rev. Lett., 77:198–201, Jul 1996.
(document), 2

[Ste96] Andrew Steane. Multiple-Particle Interference and Quantum Error Correc-
tion. Proceedings of the Royal Society of London Series A, 452(1954):2551–2577,
November 1996. (document), 3

9

	Stabilizer Codes
	Distance of a Stabilizer Code

	The [[5,1,3]] Code
	Distance of the [[5,3,1]] code
	Non-degeneracy of the [[5,3,1]] code

	Calderbank-Shor-Steane (CSS) Codes
	Description of the CSS Code
	Distance of the CSS code
	Describing the Codewords of the CSS code

